US009092346B2

a2z United States Patent (10) Patent No.: US 9,092,346 B2

McCormick, Jr. 45) Date of Patent: Jul. 28, 2015
(54) SPECULATIVE CACHE MODIFICATION USPC et 711/140, 135
See application file for complete search history.
(75) Inventor: James E. McCormick, Jr., Fort Collins,
CO (US) (56) References Cited
(73) Assignee: Intel Corporation, Santa Clara, CA U.S. PATENT DOCUMENTS
Us) 6,553,473 B1* 4/2003 Gaskinsetal. 711/169
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 225 days.
PCT International Search Report for PCT Counterpart Application
(21) Appl. No.: 13/992,354 No. PCT/US2011/066846, 3 pgs., (Aug. 30, 2012).
(Continued)
(22) PCT Filed: Dec. 22,2011
. Primary Examiner — Than Nguyen
(86) PCTNo.: PCT/US2011/066846 (74) Attorney, Agent, or Firm — Nicholson De Vos Webster
§ 371 (e)(1), & Elliott LLP
(2), (4) Date: Jun. 7,2013
(57) ABSTRACT
(87) PCT Pub. No.: ' WO2013/095508 In accordance with embodiments disclosed herein, there are
PCT Pub. Date: Jun. 27, 2013 provided methods, systems, mechanisms, techniques, and
apparatuses for implementing a speculative cache modifica-
(65) Prior Publication Data tion design. For example, in one embodiment, such means
may include an integrated circuit having a data bus; a cache
US 2013/0254486 Al Sep. 26, 2013 communicably interfaced with the data bus; a pipeline com-
municably interfaced with the data bus, in which the pipeline
(51) Int. Cl. is to receive a store instruction corresponding to a cache line
GO6F 9/38 (2006.01) to be written to cache; caching logic to perform a speculative
Go6l’ 12/08 (2006.01) cache write of the cache line into the cache before the store
GO6l' 9/30 (2006.01) instruction retires from the pipeline; and cache line validation
(52) US.CL logic to determine if the cache line written into the cache is
CPC ... GO6F 12/0875 (2013.01); GOGF 9/30043 valid or invalid, in which the cache line validation logic is to
(2013.01); GO6F 9/3842 (2013.01); GO6F invalidate the cache line speculatively written into the cache
12/0855 (2013.01); GO6F 12/0802 (2013.01); when determined invalid and further in which the store
GO6F 2212/507 (2013.01); YO2B 60/1225 instruction is allowed to retire from the pipeline when the
(2013.01) cache line is determined to be valid.
(58) Field of Classification Search

CPC . GOGF 9/3004; GOGF 12/0855

25 Claims, 14 Drawing Sheets

BRANCH PREDICTION | [INSTRUCTION GACHE UNTT 134
UNIT 132 > NSTRUCTIONTLB UNIT 136__ |
Y
[_INSTRUCTIONFETCH 3]
Y
FRONT END UNIT | DECODE UNIT 140 |
13 ‘
EXECUTONENGINE T~ ~RENAVE/ALLOGATOR —
_____ UNTI82 _)
I RETREVENT VT | 1~ i A RaE
) ol | |~ "SCHEDULERUNIT(S) 156 _ |
CORE 190 < ! L= "
I PHYSICAL REGISTER FILES UNIT(S) 158
I
=== I
EXECUTION || memoRy
UNIT(S) ACCESS
162 UNIT(S) 184
EXECUTION CLUSTERS) 160

DATATLE T.
MEMORY 172 CACHE
UNIT170 [DATA CACHE UNIT UNT [T
— 174 176

US 9,092,346 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2011/066846, 4 pgs.,
(Aug. 30, 2012).
7,383,409 B2 6/2008 SFeely, Ir. et al. PCT Notification concerning Transmittal of Copy of International
7,594,096 B2 9/2009 Eickemeyer et al. Prelimi Report on Patentability (Chapter I of the Patent Coon-
2004/0154012 Al* 82004 Wangetal.ccccooo...... 717/158 reliminary Report on Patentability (Chapter I of the Patent Coop
2005/0154866 Al* 7/2005 Steely etal. oo, 712/228 eration Treaty) for PCT Counterpan Appllcatlon No. PCT/US2011/
2007/0288725 Al 12/2007 Luick 066846, 6 pgs., (Jul. 3, 2014).
2008/0163008 Al 7/2008 Jacob
2011/0138126 Al* 6/2011 Blundell etal. 711/125 * cited by examiner

US 9,092,346 B2

Sheet 1 of 14

Jul. 28, 2015

U.S. Patent

Vi Ol

|||4||| |||||||| |||
_ | Bl oL 0
| 2 {ounawn| 31 ol [avayaonay cu o | s [oo |0 | 2ol
| LINAOD [0} "ol AMOWAW [39¥1S3Un03@| 10¥3¥ | 31n03HOS [oNINYNaY 20TIv[aa0oaaf) - koL s
TR At Do) ETL L wson | ___ | | ___ o
N)
Y
001 INITAdld

US 9,092,346 B2

Sheet 2 of 14

Jul. 28, 2015

U.S. Patent

ol o
LINN LINN FHOYO ¥Y1va | 0Lk LINN
JHOVO Zll AHOW3AW
7] LINQ Em ¥1vd
y 091 (S)43LSN1D NOILND3X
791 (S)LINN 79l
88300V (SILINN
AYOWIW NOILND3X3
4 A
———— _V____

861 (S)LINN 3114 43181934 T¥OISAHd

[
y

e A
%! (SILINNYINCIHOS | | sk
| _ 95/ (SILINA prEe U
_qllllmmi_m: |||||] 05k LINN
v — HOLYOOTIY /[ININIY_ _ | INIONZ NOILND3X3
)
_ or} :z:mao”mo _ LINA ON3 INOYA
| 8ELHOIIANOILONYLSNE |
1
9 LINN &1L NOILONYLSNI | _ Ze) LINN
¥E1 LINN GHOYD NOILONYISNI | NOILOIA34d HONvYE

> 06} 3400

US 9,092,346 B2

Sheet 3 of 14

Jul. 28, 2015

U.S. Patent

¢ Ol

[S94 (¥4 (44
21607 UonepifeA aurm ayoen snq 21607 Buiyoen
e
5114
> (eyoe) 17 69)
b apey

H

]

7‘ 012 suledig

702 Inau) pajesBaju

uonnsul

\ I01g

00¢ T~

US 9,092,346 B2

Sheet 4 of 14

Jul. 28, 2015

U.S. Patent

¢ Ol

fejdal
LonINISU| ~_

owe
91607 UoeaIEND BUIT BYoED
144
21607 Buiyoen
iord (¥4
21607 UonEpIEA BUIT 8Y%R) 8nq SUOIIBPI[BAY|
eje
S - 1ed -E H -
T~y L= (eyoe) 11 6°9)
— — ayoen
q0¢e¢ Voee F\
Repy Xapu| [
TEC LODBLLOU| XSpuy| \

—
-—
—
—
—
—— -
—
——
- —
— e —— — —

uolonAsul

\ 2/0)g

00€ T ~—uonr

US 9,092,346 B2

Sheet 5 of 14

Jul. 28, 2015

/
\\ {77 2167 uogeayient) aulq euyoeD
4
¥ 'Old
/s Gty 210 uojepifeA ayoeg
/
’
/. 1453
\\ snq T2p oibo] Buiyen
e Eleq
\\
/ 07F auljedid
\\
\\
S GOF suoen
923 _u -
(s)eorpiolu| _ TOF 1noi13) pojelBiagu|
_ I ———————
I I e
| _ _ W pebe| _—---7""
087 [53
wun Aedsig (sa)sng
(1153
(s)eoiap [Rioydusg o o
(shiossanolg fiowaly
B0 wejsAs

U.S. Patent

US 9,092,346 B2

Sheet 6 of 14

Jul. 28, 2015

U.S. Patent

Frd "PlfEA 8q 0} paulLIB}op

816U BuaE Bu) udyMm suladid oy) » pug
WOJj 311131 0} UORoNIIsU] 2104 aU) Buimoly
i
0% "PileAul 8q o) pauluiisjap s| sul|
BLIB BU USYM BYIE 8L U Bul| 8YeD au Burjepieau 80% e
ﬂ ay o) uayum Buiaq wouy auy syaed au) Buikyenbsig
it "PifeAu} Jo pilea

S| BUOBD BU} 0Ju] USHLM BUI| 3y9ed By Ji Buiuusiag

4

[“auippdid
8U) WO Selljed LOGINIISUI BI0)S BU) 10j8q BJUM BYIED
SAIJINORAS Y BIA 3YIED AU} 0] dul| 3Ydes aip Bunum

IS

"ajLM
USRI BAE[NIAAS B BIA SLIRI 8Y)
0} uajjm Butag wioy paiyenbsip
8q ul| 8L oLy LB

[0
*31{989 0] LSJLIM 8¢ 0) UI| 3Ude) B o) Buipuodsalio

au0}s ay ‘suljedid e Je uoponusul aiojs e Buineosy

\l/\ 006

yElS

G old

U.S. Patent Jul. 28, 2015

Sheet 7 of 14 US 9,092,346 B2

_—— > 615
r—-—-—————"—"=>——"=——+— 1
| | /
T ~L-s 610
600 ! |
R‘ I 1
| |
| |
! \ PROCESSOR
L——4
| 695
— 645 —"/—{ — 640
DISPLAY GMCH MEMORY
650
ICH
080 ~ 670
EXTERNAL
GRAPHICS PERIPHERAL
DEVICE

FIG. 6

US 9,092,346 B2

Sheet 8 of 14

Jul. 28, 2015

U.S. Patent

ONY 3000 TEZ — _
— 7] 7]
JOWIOLS Y1V - S0IA30 WNOD 3SNON/GHYORADY
—1 \ h L.
743 [8z
o/l oIany $30IA30 Of 390148 S
ﬁ ! | .
6L 8¢l
4 SOIHdYYO
8L BIL38dIHO ¥l AN O
dd dd
vos~why s~y
Fd| | dd —l dd] [dd
%7 887 4 82| |8
052
el 8L i el
RHOWIN o Ol AHOWN
087 H0SS3004d 027 40S$3004d .

004

U.S. Patent Jul. 28, 2015 Sheet 9 of 14 US 9,092,346 B2

>
5 o
=3
L
=
1 =
o SR 3
(s
QO
D [n'ef
] o %lqj»%g|
§<r € 3| o [~— - <o
~ Ll
& « Q
= T o
—_ [e®]
gl 2 = o
|°—° 2= & 9 \
Deg 28| O
Y T -
O
OOlﬂ_
N~ TN
'C\> oon_g
[=o/
&
Ol O 0o <
7 Sl el 3
Ll
O
2
o™
o Og
>
5 o
= 23
Ll
=
o
o
oo

US 9,092,346 B2

suaydyews
e Piey-puey

Sheet 10 of 14

Jul. 28, 2015

U.S. Patent

06 Jossaooid
paje.boju| -
€06
80RLAIUI YINO|
ERITEY|
Bunndwon 18|qe A
106

206

$06 Jossaaoud
paresbau|

£06
80BLA)UI 4ONO |

6 Old

US 9,092,346 B2

Sheet 11 of 14

Jul. 28, 2015

U.S. Patent

¢e0}
JOV443LNI
AY1dsid

[
W3LSASANS AY1dSIA

050}
INIFWIOYNYIN ¥IMOd

o0}

HITIOYLNOD Ol

0c0}
WNILSASENS oldny

010}
40SS3004d

0901

W3LSASANS AHOWAN

801 ¢80}
WoYd ol

080F
SNCOILOINNQD TYYIHdIM3d

vL0l
SSATIHIM

¢l0l
4YINTI30

ol0l

ALIAILIINNOD

N — 000}

0l "9l

US 9,092,346 B2

Sheet 12 of 14

Jul. 28, 2015

U.S. Patent

L1 "Old

cLL WNIQ3N 3OVHOLS

0FH—~

— 0217
H Ob*) JYYMLIOS
V1vaNOIS3d NOILYTNINIS
TVOISAHd ¥O 1QH)
300N FYMAYYH

(ST
NOILYOI4av4

U.S. Patent

Jul. 28, 2015 Sheet 13 of 14

US 9,092,346 B2

RN
N
19

—
N
—
(e

—
N
—
a

FIG. 12

US 9,092,346 B2

Sheet 14 of 14

Jul. 28, 2015

U.S. Patent

Voel
H31IdINOD 98X

90¢E}
3000 AYVNIE 98X

og}

JOVNONYT T3ATT HOIH

50ET
H31dN0D

L3S NOILONYLSNI

JAILYNHALTY

it
¥3L4IANOD NOILONYLSN]
. Orek
AMIE 3000 AYYNIg
135 NOILONYISN
THYALIOS INLYNSALTY
FHYMAHVH /A
4
ier PIET
02 3409 135 NOILONYLSNI
13S NOILONYLSNI 98X 3NO 98X NV LNOHLIM 40SS3004d
1S3 1V HLIM ¥0SS300d

US 9,092,346 B2

1
SPECULATIVE CACHE MODIFICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/066846, filed Dec. 22, 2011, entitled SPECU-
LATIVE CACHE MODIFICATION.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

The subject matter described herein relates generally to the
field of computing, and more particularly, to systems and
methods for implementing a speculative cache modification
design.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to embodiments of the claimed subject mat-
ter.

Generally speaking, memory closer to the CPU may be
accessed faster. Memory within a CPU may be referred to as
cache, and may be accessible at different hierarchical levels,
such as Level 1 cache (L1 cache) and Level 2 cache (L2
cache). System memory such as memory modules coupled
with a motherboard may also be available, such externally
available memory which is separate from the CPU but acces-
sible to the CPU may be referred to as, for example, off-chip
cache or Level 3 cache (.3 cache), and so on, however, this is
not always consistent as a third hierarchical level of cache
(e.g., L3 cache) may be on-chip or “on-die” and thus be
internal to the CPU.

CPU cache, such as L1 cache, is used by the central pro-
cessing unit of a computer to reduce the average time to
access memory. The L1 cache is a smaller, faster memory
which stores copies of the data from the most frequently used
main memory locations. [.2 cache may be larger, but slower to
access. And additional memory, whether on-chip or exter-
nally available system memory used as cache may be larger
still, but slower to access then smaller and closer CPU cache
levels. As long as most memory accesses are cached memory
locations, the average latency of memory accesses will be
closer to the cache latency than to the latency of main
memory.

When the processor needs to read from or write to a loca-
tion in main memory, it first checks whether a copy of that
data is in one of'its caches (e.g., .1, .2 caches, etc.) and when
available, the processor reads from or writes to the cache

10

15

20

25

30

35

40

45

50

55

60

65

2

instead of seeking the data from a system’s main memory,
thus providing a faster result than reading from or writing to
main memory of the system.

Conventional caches utilize a store buffer to reduce cache
latency and also to enable the reading of store instructions that
have not yet been written into cache. As stores go down a
pipeline they store the data in a store buffer and persist until
the store is retired from the pipeline, at which point the store
writes the data to cache.

Improvements to cache latency (e.g., reductions in cache
latency) provide direct and immediate benefits to computa-
tional efficiency for an implementing circuit. Lower latency
means that data required by, for example, a CPU pipeline is
available sooner without having to expend cycles waiting for
unavailable data.

However, the conventional cache design exhibits undesir-
able traits. For example, the store buffer necessitates addi-
tional circuit complexity and additional components on an
integrated circuit that implements such circuitry. The store
buffer requires the allocation of valuable area for address
comparators, data buffering space, muxes (multiplexors) and
so forth on an integrating circuit and further consumes power
to operate such devices. Moreover, when data is directed to
the store buffer, several cycles may be required before a
subsequent cache read operation is able to “see” and retrieve
the data from the store buffer; and still further additional
cycles are required before the data can be retrieved from the
cache. Thus, if an instruction to store “x” in the cache is
triggered and an instruction to read “x” from the cache is
issued within shortly thereafter, the read must be stalled or
replayed in the pipeline for multiple cycles until data “x”
becomes available in the store buffer, thus introducing over-
head inefficiencies and sub-optimal system performance.

The present state of the art may therefore benefit from
systems and methods for implementing a speculative cache
modification design as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by
way of limitation, and will be more fully understood with
reference to the following detailed description when consid-
ered in connection with the figures in which:

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to described
embodiments;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
described embodiments;

FIG. 2 illustrates an alternative exemplary architecture in
accordance with which embodiments may operate;

FIG. 3 illustrates another alternative exemplary architec-
ture in accordance with which embodiments may operate;

FIG. 4 shows a diagrammatic representation of a system in
accordance with which embodiments may operate, be
installed, integrated, or configured;

FIG. 5 is a flow diagram illustrating a method for imple-
menting a speculative cache modification design in accor-
dance with described embodiments;

FIG. 6 is a block diagram of a computer system according
to one embodiment;

FIG. 7 is a block diagram of a computer system according
to one embodiment;

US 9,092,346 B2

3

FIG. 8 is a block diagram of a computer system according
to one embodiment;

FIG. 9 depicts a tablet computing device and a hand-held
smartphone each having a circuitry integrated therein as
described in accordance with the embodiments;

FIG. 10 is a block diagram of an embodiment of tablet
computing device, a smartphone, or other mobile device in
which touchscreen interface connectors are used;

FIG. 11 is a block diagram of an IP core development
system according to one embodiment;

FIG. 12 illustrates an architecture emulation system
according to one embodiment; and

FIG. 13 illustrates a system to translate instructions accord-
ing to one embodiment.

DETAILED DESCRIPTION

Described herein are systems and methods for implement-
ing a speculative cache modification design. For example, in
one embodiment, such means may include an integrated cir-
cuit having a data bus; a cache communicably interfaced with
the data bus; a pipeline communicably interfaced with the
data bus, in which the pipeline is to receive a store instruction
corresponding to a cache line to be written to cache; caching
logic to perform a speculative cache write of the cache line
into the cache before the store instruction retires from the
pipeline; and cache line validation logic to determine if the
cache line written into the cache is valid or invalid, in which
the cache line validation logic is to invalidate the cache line
speculatively written into the cache when determined invalid
and further in which the store instruction is allowed to retire
from the pipeline when the cache line is determined to be
valid.

In the following description, numerous specific details are
set forth such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand-
ing of the various embodiments. It will be apparent, however,
to one skilled in the art that these specific details need not be
employed to practice the embodiments disclosed herein. In
other instances, well known materials or methods have not
been described in detail in order to avoid unnecessarily
obscuring the disclosed embodiments.

In addition to various hardware components depicted in the
figures and described herein, embodiments further include
various operations which are described below. The operations
described in accordance with such embodiments may be per-
formed by hardware components or may be embodied in
machine-executable instructions, which may be used to cause
a general-purpose or special-purpose processor programmed
with the instructions to perform the operations. Alternatively,
the operations may be performed by a combination of hard-
ware and software.

Embodiments also relate to an apparatus for performing
the operations disclosed herein. This apparatus may be spe-
cially constructed for the required purposes, or it may be a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, each coupled with a computer system
bus. The term “coupled” may refer to two or more elements
which are in direct contact (physically, electrically, magneti-

10

15

20

25

30

35

40

45

55

60

65

4

cally, optically, etc.) or to two or more elements that are not in
direct contact with each other, but still cooperate and/or inter-
act with each other.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, embodiments are not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the embodiments as
described herein.

Any of the disclosed embodiments may be used alone or
together with one another in any combination. Although vari-
ous embodiments may have been partially motivated by defi-
ciencies with conventional techniques and approaches, some
of which are described or alluded to within the specification,
the embodiments need not necessarily address or solve any of
these deficiencies, but rather, may address only some of the
deficiencies, address none of the deficiencies, or be directed
toward different deficiencies and problems which are not
directly discussed.

Exemplary Core Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to described
embodiments. FIG. 1B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
described embodiments. The solid lined boxes in FIG. 1A and
FIG. 1B illustrate the in-order pipeline and in-order core,
while the optional addition of the dashed lined boxes illus-
trates the register renaming, out-of-order issue/execution
pipeline and core. Given that the in-order aspect is a subset of
the out-of-order aspect, the out-of-order aspect will be
described.

US 9,092,346 B2

5

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an allo-
cation stage 108, a renaming stage 110, a scheduling (also
known as a dispatch or issue) stage 112, a register read/
memory read stage 114, an execute stage 116, a write back/
memory write stage 118, an exception handling stage 122,
and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both are
coupled to amemory unit 170. The core 190 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 190 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 130 includes a branch prediction unit
132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)
136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 140
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 140 or otherwise within
the front end unit 130). The decode unit 140 is coupled to a
rename/allocator unit 152 in the execution engine unit 150.

The execution engine unit 150 includes the rename/alloca-
tor unit 152 coupled to a retirement unit 154 and a set of one
or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 156 is coupled to the physical register file(s)
unit(s) 158. Each of the physical register file(s) unit(s) 158
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit(s) 158 comprises a vector registers unit, a write
mask registers unit, and a scalar registers unit. Such register
units may provide architectural vector registers, vector mask
registers, and general purpose registers. The physical register
file(s) unit(s) 158 is overlapped by the retirement unit 154 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and a retirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
154 and the physical register file(s) unit(s) 158 are coupled to
the execution cluster(s) 160. The execution cluster(s) 160
includes a set of one or more execution units 162 and a set of
one or more memory access units 164. The execution units
162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,

10

15

20

25

30

35

40

45

50

55

60

65

6

vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 156,
physical register file(s) unit(s) 158, and execution cluster(s)
160 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 164). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 164 is coupled to the
memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 172 in the memory unit 170. The instruction cache unit
134 is further coupled to a level 2 (L2) cache unit 176 in the
memory unit 170. The L2 cache unit 176 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 100 as follows: 1) the instruction fetch unit 138
performs the fetch and length decoding stages 102 and 104; 2)
the decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per-
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160 per-
form the execute stage 116; 6) the memory unit 170 and the
physical register file(s) unit(s) 158 perform the write back/
memory write stage 118; 7) various units may be involved in
the exception handling stage 122; and 8) the retirement unit
154 and the physical register file(s) unit(s) 158 perform the
commit stage 124.

The core 190 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
190 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register

US 9,092,346 B2

7

renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 134/174 and a shared .2
cache unit 176, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

FIG. 2 illustrates an alternative exemplary architecture 200
in accordance with which embodiments may operate. In par-
ticular, an integrated circuit 201 and its speculative cache
write capability is depicted and described in additional detail.

In accordance with one embodiment, an integrated circuit
201 includes: a data bus 215; a cache 205 communicably
interfaced with the data bus 215; and a pipeline 210 commu-
nicably interfaced with the data bus 215, in which the pipeline
210 is to receive a store instruction 202 corresponding to a
cache line 204. In such an embodiment, the integrated circuit
201 further includes caching logic 225 to perform a specula-
tive cache write of the cache line 204 into the cache 205
before the store instruction 202 retires from the pipeline 210
and also cache line validation logic 235 to determine if the
cache line 204 written into the cache 205 is valid or invalid, in
which the cache line validation logic 235 is to invalidate the
cache line 204 speculatively written into the cache 205 when
determined invalid and further in which the store instruction
202 is allowed to retire from the pipeline 210 when the cache
line 204 is determined to be valid.

Once the store instruction retires from the pipeline, it is
deemed to have been committed as it is now determined that
the speculatively written information to cache is correct, and
thus, no further action needs to be taken. Where the informa-
tion is not correct, an affirmative invalidation operation must
take place to invalidate the cache line in the cache as it does
not have the correct information.

In one embodiment, the store instruction specifies a regis-
ter with an address and the cache line to be written to cache is
based on the address in the register.

In one embodiment, the integrated circuit 201 starts and
completes during a two clock cycles of the integrated circuit
201 both: (a) receiving the store instruction 202 correspond-
ing to the cache line 204; and (b) performing the speculative
cache write of the cache line 204 into the cache 205. Thus,
within two cycles, the pipeline 210 processes the receipt of
the store instruction and completes the speculative cache
write of the cache line 204 into the cache 205. In contrast,
conventional mechanisms requiring a store buffer perform a
store instruction which buffers to the store buffer and multiple
cycles pass before the store instruction retires triggering the
store buffer to write the data to the cache, during which time
cache hits cannot read against the cache and must therefore
engage complex circuitry to check for cached data within the
store buffer, thus adding overhead and delay. Notably, the
described cache line 204 is never processed through a store
buffer and in accordance with the described embodiments, no
such store buffer exists on the integrated circuit 201 to service
the described cache 205, thus enabling the immediate avail-
ability of the cache line 204 at any subsequent cycle.

In accordance with one embodiment, the pipeline 210 fur-
ther receives a read instruction to read the cache 205 and the
integrated circuit 201 starts and completes during a single
clock cycle of the integrated circuit 201 both: (a) receiving the
read instruction for the cache line 204, and (b) fulfilling the
read instruction by reading the cache line 204 from the cache

25

35

40

45

8

205. In such an embodiment, the single clock cycle of the
integrated circuit 201 to read the cache line follows the two
clock cycles of the integrated circuit 201 without any inter-
vening clock cycles on the integrated circuit 201. Thus, opera-
tions which require a cache store (write) operation and imme-
diately require a cache read operation can be completed by an
implementing integrated circuit 201 in as few as three cycles
of the integrated circuit.

In one embodiment, the cache 205 is a Level 1 cache (L1
cache) at a lowest hierarchal cache level for the integrated
circuit 201. In one embodiment, the L1 cache implements a
single cycle latency L1 cache. In one embodiment, the .1
cache is a 16 K (Kilobyte) 4-way set associative cache for a
Central Processor Unit (CPU) embodied by the integrated
circuit 201. In one embodiment, the cache 205 is a First Level
Data (FLD) cache to implement very low latency single cycle
processing without a complementary store buffer.

In accordance with one embodiment, the speculative cache
write of the cache line 204 into the cache 205 includes writing
the cache line 204 into the cache 205 before the store instruc-
tion 202 corresponding to the cache line 204 retires. Because
the cache line 204 is written to the cache 205 before retire-
ment, the cache line 204 cannot be determined valid at the
time of the write, hence the write being a speculative cache
write. It is possible that the store instruction will never retire,
and thus, the cache line which is already written to cache will
not contain correct information. Instead, the speculatively
written cache line will require invalidation to ensure data
integrity. Such a technique is therefore a compromise in an
effort to provide an overall performance improvement and a
reduction in complexity, power, and area of the integrated
circuit 201 through the removal of the conventionally utilized
store buffer. As described, the integrated circuit 201 allows
store instructions 202 to write the First Level Data (FLD)
cache before they retire and because a single-cycle First Level
Data (FLD) cache is used, once the store instructions specu-
latively write to the cache 205, the written data (e.g., the cache
line 204) is made available to reads and other stores with only
a two-cycle latency or delay subsequent to the arrival of the
store instruction 202. So as to maintain data integrity in the
event speculative cache write mistakes occur, a cache invali-
dation mechanism is provided via the cache line validation
logic 235 to invalidate any cache lines 204 that are written by
store instructions which then fail to retire.

In accordance with one embodiment, the cache line vali-
dation logic 235 determining whether the cache line 204
written into the cache 205 is valid or invalid includes one of:
(1) determining the cache line 204 is valid when the store
instruction 202 retires from the pipeline; (2) determining the
cache line 204 is invalid when the pipeline 210 is flushed
before the store instruction 202 retires; (3) determining the
cache line 204 is invalid when the pipeline 210 processes a
late replay for the store instruction 202 corresponding to the
cache line 204; and (4) determining the cache line 204 is
invalid when the pipeline 210 processes a branch mispredic-
tion which causes a flush of the store instruction 202.

Branch mispredictions occur when a central processing
unit (CPU) mispredicts (e.g., guesses wrong) what the next
instruction is to be processed via its branch prediction mecha-
nism which is used to speed up execution. During the execu-
tion of certain programs there are execution points where the
program execution flow can continue in any one of several
ways. Such points are called branches, or conditional jumps.
The CPU uses the pipeline 210 to process several instructions
at the same time, not all of which will necessarily be used or
consumed. When the code for a conditional jump is read, the

US 9,092,346 B2

9

CPU does not yet know for certain what the next instruction
to execute and insert into the execution pipeline 210.

Thus, branch prediction is used to permit such execution
and instruction. The branch prediction mechanism guesses
the next instruction to execute and inserts the next assumed
instruction to the pipeline 210. Guessing wrong results in the
branch misprediction and in accordance with the described
embodiments, results in a speculatively written cache write
requiring a subsequent cache line invalidation. The partially
processed instructions in the pipeline 210 after the branch are
then discarded and the pipeline 210 starts over at the correct
branch when the branch misprediction is detected. This slows
down the program execution and invalidating the specula-
tively written cache line 204 requires undesirable overhead
because a later access to the invalidated cache line will miss
the cache and thus potentially delay the pipeline. Neverthe-
less, because the large majority of speculative cache writes
are correct, an overall performance gain is realized, despite
the occasional cache line invalidation.

FIG. 3 illustrates another alternative exemplary architec-
ture 300 in accordance with which embodiments may oper-
ate. For example, an integrated circuit 301 is depicted in
additional detail showing the cache line validation logic 235
causing an invalidation 354 through a port 345 of the cache
205, an instruction replay 352 is depicted, and cache line
qualification logic 340 is additionally presented which uti-
lizes index information 330 including index 330A and way
330B.

In one embodiment, the cache line validation logic 235
further maintains indexing information 330 for cache lines
204 written to the cache 205 via a speculative cache write. For
example, in one embodiment the indexing information 330
maintains an index 330A and a way 330B on the cache 205
(e.g., which one of several sub-portions addressable as cache
way) for each cache line 204 written to the cache 205 via a
speculative cache write. Such information is only necessary
for the purposes of subsequent invalidation in the event of a
mistaken speculative cache write for a non-retiring store
instruction. In the event speculatively written cache lines 204
must be invalidated, for example, as a result of a flush, the
addressing information (e.g., 330A-B) provided by index
information 330 is input back into the pipeline 210 and then
applied to a port 345 that enables the cache line invalidation
354, thus resulting in a simple invalidation of all the cache
lines 204 that were just written and are no longer applicable.

Thus, in accordance with one embodiment, integrated cir-
cuit 301 further includes a port 345 into the cache 205 in
which the port 345 is capable to receive cache line 204 invali-
dations 354 as depicted. In one embodiment, the cache line
validation logic 235 applies the indexing information 330 for
a cache line 204 which has been determined to be invalid
against the port 345 of the cache 205 to invalidate the cache
line 204 in the cache 205.

Iftoo many speculatively written cache lines 204 are invali-
dated then performance will suffer to an extent which is
greater than using store buffers as is done with the above
described conventional techniques. However, store instruc-
tions are late enough in the pipeline 210 that most events
which trigger mistakes (e.g., improperly written cache lines
which then require invalidation) are already known, and thus,
many such store instructions can be preempted from specu-
latively writing their cache lines 204 to the cache. Thus, no
such subsequent cache line invalidation is required and per-
formance is not degraded. Instead, a performance gain is
realized because not only is a cache line invalidation no
longer required, but additionally, a temporary write to the
store buffer is also negated as the described embodiments

5

10

15

20

25

30

35

40

45

55

60

65

10

have done away with such a store buffer. In testing, it has been
found that relatively few events are not caught; resulting in
improper cache writes which require a subsequent invalida-
tion of the cache line 204.

Thus, in accordance with one embodiment, the integrated
circuit 301 further includes cache line qualification logic 340
to determine whether a cache line 204 corresponding to a
store instruction 202 received at the pipeline 210 is to be
written to the cache 205 via the speculative cache write or
disqualified from being written to the cache 205 via the specu-
lative cache write. In such an embodiment, the cache line
qualification logic 340 is to disqualify the cache line 204 from
being written to the cache 205 via the speculative cache write
based on one or more of: (1) a pipeline 210 flush of the store
instruction 202 before the speculative cache write of the
cache line 204 to the cache 205; (2) a branch misprediction
identified before the speculative cache write of the cache line
204 to the cache 205; (3) a replay 352 of an instruction in the
pipeline 210 affecting the cache line 204 which is identified
before the speculative cache write of the cache line 204 to the
cache 205; and (4) the store instruction being predicated off
causing the store instruction not to execute in the pipeline.
Thus, depending on the disqualification events, a cache line
corresponding to a store instruction may either be specula-
tively written to cache or disqualified from such a speculative
write.

Various qualifiers and disqualifiers may be utilized by the
cache line qualification logic 340 to permit or disqualify
speculative cache writes into the cache 205. For example, the
cache line qualification logic 340 may have a series of rules
such as: (1) do not write if there is no corresponding store
instruction 202; (2) do not write if a store instruction 202 is
determined to be invalid; (3) do not write if the store is
predicated off, and so forth. Then, the qualifications are ref-
erenced to determine whether a presently valid write exists
for the present cycle. As an instruction progresses down the
pipeline 210, more and more information is made available
about whether such an instruction will trigger a flush or
whether a replay for the instruction will occur. Circuitry of the
integrated circuit 301 collects such information and applies it
to the qualification rules so as to better predict cache invali-
dating events such as a future flush, a future confirmationof'a
misprediction, a future late replay, and so forth.

In one embodiment, circuitry of the integrated circuit
implementing the speculative cache modification design is
capable of determining when a speculative write of a cache
line 204 to the cache 205 is unnecessary due to, for example,
a pipeline 210 flush or late replay. For example, a late replay
can cause all instructions in the pipeline 210 to cease and then
replay from the beginning which by necessity invalidates all
speculative writes to the cache 205. If a pipeline 210 flush or
alate replay occurs, then all store instructions 202 resulting in
a speculatively written cache line 204 must subsequently
require invalidation 354 to be played back against the cache
205 to invalidate 354 the erroneous cache lines 204. However,
it is in many circumstances knowable through the circuitry
whether a pipeline 210 flush or a late replay and thus, such
knowledge can be leveraged to completely preempt unneces-
sary a large portion of speculative cache writes to the cache
through the cache line qualification logic 340 of the integrated
circuit 301. If such information was not attainable in suffi-
cient time for any of the store instructions, then excess over-
head may result due to speculatively writing and subse-
quently invalidating numerous cache lines and generating
wasteful overhead and system degradation.

For example, even where a late replay is encountered and
the cache line qualification logic 340 prevents an associated

US 9,092,346 B2

11

store instruction 202 from speculatively writing its cache line
204, the respective instruction will come back down the pipe-
line 210 and will speculatively write at that time.

In accordance with one embodiment, the cache line vali-
dation logic 235 allows the store instruction to retire before
subsequent instructions affecting the cache line 204 arrive at
the pipeline 210. In most instances, there is a multi-cycle
delay between a store instruction corresponding to a cache
line 204 to be written to the cache and any subsequent instruc-
tions which require or act upon data associated with such a
cache line 204, and thus, no special action is required to
ensure that speculatively written cache lines are determined
to be valid or appropriately invalidated before subsequent
instructions affecting the cache line arrive.

However, some special instructions may arrive too quickly,
and thus, require special attention. Accordingly, in one
embodiment, allowing the store instruction to retire before
subsequent instructions affecting the cache line 204 arrive at
the pipeline 210 includes detecting a snoop and responsively
causing a replay 352 of subsequent instructions. Any snoop
may cause a potential structural hazard between the snoops
and invalidations of cache lines because both make use of the
same cache ports, thus creating a potential contention issue
for the port. Snoops may be given higher priority than invali-
dations thus requiring the invalidations to wait. The invalida-
tions may in turn be given higher priority than the subsequent
instructions, and thus, the subsequent instructions are
replayed until the invalidations finish.

In one embodiment, the cache 205 includes a write through
First Level Data (FLD) cache for a first core on the integrated
circuit 301 which is prohibited from storing dirty data and
prohibited from operating as a source cache to other proces-
sor cores on the integrated circuit 301. Further in accordance
with such an embodiment, a next level of cache on the inte-
grated circuit 301 operates as the source cache to other pro-
cessor cores on the integrated circuit 301.

Timing of cache writes are controlled by what is known as
a write policy in which there are two basic writing
approaches: write-through and write-back. A write-through
cache policy causes writes to be done synchronously both to
the cache 205 and to the next level of cache. A write-back (or
write-behind) cache policy writes only to the cache 205 and a
modified cache block is written back to the next level of
cache, just before it is replaced. Write-back locations that are
written over must be marked as dirty for later writing to the
backing underlying non-cache memory store. The data in
such locations are written back to the next level of cache only
when they are evicted from the cache 205 resulting in what is
commonly referred to as a lazy write.

In accordance with the described embodiments, the cache
205 operating as a write through First Level Data (FLD)
cache cannot ever contain dirty data because: (1) it synchro-
nously updates the next level of cache and (2) the write
through First Level Data (FLD) cache delegates caching
requests from other cores to the next level of cache in accor-
dance with such an embodiment, and thus, there is no risk that
a speculatively written but not yet determined valid cache line
can be read or forwarded to another processor core.

FIG. 4 shows a diagrammatic representation of a system
499 in accordance with which embodiments may operate, be
installed, integrated, or configured.

In one embodiment, system 499 includes a memory 495
and a processor or processors 496. For example, memory 495
may store instructions to be executed and processor(s) 496
may execute such instructions. System 499 includes commu-
nication bus(es) 465 to transfer transactions, instructions,
requests, and data within system 499 among a plurality of

20

40

45

12

peripheral device(s) 470 communicably interfaced with one
or more communication buses 465 and/or interface(s) 475.
Display unit 480 is additionally depicted within system 499.

Distinct within system 499 is integrated circuit 401 which
may be installed and configured in a compatible system 499,
or manufactured and provided separately so as to operate in
conjunction with appropriate components of system 499.

In accordance with one embodiment, system 499 includes
at least a display unit 480 and an integrated circuit 401. The
integrated circuit 401 may operate as, for example, a proces-
sor or as another computing component of system 499. In
such an embodiment, the integrated circuit 401 of system 499
includes at least: a data bus 415; a cache 405 communicably
interfaced with the data bus 415; a pipeline 410 communica-
bly interfaced with the data bus 415, in which the pipeline 410
is to receive a store instruction corresponding to a cache line
to be written to cache; caching logic 425 to perform a specu-
lative cache write of the cache line into the cache 405 before
the store instruction retires from the pipeline 410; and cache
line validation logic 435 to determine if the cache line written
into the cache 405 is valid or invalid, in which the cache line
validation logic 435 is to invalidate the cache line specula-
tively written into the cache 405 when the cache line is deter-
mined to be invalid and further in which the store instruction
is allowed to retire from the pipeline 410 when the cache line
is determined to be valid.

In one embodiment, system 499 embodies a tablet or a
smartphone and the display unit 480 is a touchscreen interface
for the tablet or the smartphone. In such an embodiment, the
integrated circuit 401 is incorporated into the tablet or smart-
phone, for example, as a processor or other computing com-
ponent for the tablet or smartphone.

In one embodiment, the system 499 further includes cache
line qualification logic 440 to determine whether a cache line
corresponding to a store instruction received at the pipeline
410 is to be written to the cache via the speculative cache
write or disqualified from being written to the cache via the
speculative cache write.

FIG. 5 is a flow diagram illustrating a method for imple-
menting a speculative cache modification design in accor-
dance with described embodiments. Method 500 may be
performed by processing logic that may include hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.). The numbering of the blocks presented is for the
sake of clarity and is not intended to prescribe an order of
operations in which the various blocks must occur.

Method 500 begins with processing logic for receiving a
store instruction at a pipeline, in which the store instruction
corresponds to a cache line to be written to cache (block 505).

At decision point 507, processing logic determines
whether the cache line can be disqualified from being written
to the cache via a speculative cache write. If “yes,” then
processing proceeds to block 508 and processing logic dis-
qualifies the cache line from being written to the cache.

Conversely, if “no,” a disqualification cannot be made, then
processing proceeds to block 510 and processing logic writes
the cache line to the cache via the speculative cache write
before the store instruction retires from the pipeline.

Atblock 515, processing logic determines if the cache line
written into the cache is valid or invalid.

At block 520, processing logic invalidates the cache line in
the cache when the cache line is determined to be invalid.

At block 525, processing logic allows the store instruction
to retire from the pipeline when the cache line is determined
to be valid.

Referring now to FIG. 6, shown is a block diagram of a
system 600 in accordance with one embodiment of the

US 9,092,346 B2

13

present invention. The system 600 may include one or more
processors 610, 615, which are coupled to graphics memory
controller hub (GMCH) 620. The optional nature of addi-
tional processors 615 is denoted in FIG. 6 with broken lines.

Each processor 610, 615 may be some version of the cir-
cuit, integrated circuit, processor, and/or silicon integrated
circuit as described above. However, it should be noted that it
is unlikely that integrated graphics logic and integrated
memory control units would exist in the processors 610, 615.
FIG. 6 illustrates that the GMCH 620 may be coupled to a
memory 640 that may be, for example, a dynamic random
access memory (DRAM). The DRAM may, for at least one
embodiment, be associated with a non-volatile cache.

The GMCH 620 may be a chipset, or a portion of a chipset.
The GMCH 620 may communicate with the processor(s) 610,
615 and control interaction between the processor(s) 610, 615
and memory 640. The GMCH 620 may also act as an accel-
erated bus interface between the processor(s) 610, 615 and
other elements of the system 600. For at least one embodi-
ment, the GMCH 620 communicates with the processor(s)
610, 615 via a multi-drop bus, such as a frontside bus (FSB)
695.

Furthermore, GMCH 620 is coupled to a display 645 (such
as a flat panel or touchscreen display). GMCH 620 may
include an integrated graphics accelerator. GMCH 620 is
further coupled to an input/output (I/O) controller hub (ICH)
650, which may be used to couple various peripheral devices
to system 600. Shown for example in the embodiment of F1G.
6 is an external graphics device 660, which may be a discrete
graphics device coupled to ICH 650, along with another
peripheral device 670.

Alternatively, additional or different processors may also
be present in the system 600. For example, additional proces-
sor(s) 615 may include additional processors(s) that are the
same as processor 610, additional processor(s) that are het-
erogeneous or asymmetric to processor 610, accelerators
(such as, e.g., graphics accelerators or digital signal process-
ing (DSP) units), field programmable gate arrays, or any other
processor. There can be a variety of differences between the
processor(s) 610, 615 in terms of a spectrum of metrics of
merit including architectural, micro-architectural, thermal,
power consumption characteristics, and the like. These dif-
ferences may effectively manifest themselves as asymmetry
and heterogeneity amongst the processors 610, 615. For at
least one embodiment, the various processors 610, 615 may
reside in the same die package.

Referring now to FIG. 7, shown is a block diagram of a
second system 700 in accordance with an embodiment of the
present invention. As shown in FIG. 7, multiprocessor system
700 is a point-to-point interconnect system, and includes a
first processor 770 and a second processor 780 coupled via a
point-to-point interface 750. Each of processors 770 and 780
may be some version of the processors or integrated circuits
as previously described or as one or more of the processors
610, 615.

While shown with only two processors 770, 780, it is to be
understood that the scope of the present invention is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Processor
770 also includes as part of its bus controller units point-to-
point (P-P) interfaces 776 and 778; similarly, second proces-
sor 780 includes P-P interfaces 786 and 788. Processors 770,
780 may exchange information via a point-to-point (P-P)
interface 750 using P-P interface circuits 778, 788. As shown
in FIG. 7, IMCs 772 and 782 couple the processors to respec-

10

15

20

25

30

35

40

45

50

55

60

65

14

tive memories, namely a memory 732 and a memory 734,
which may be portions of main memory locally attached to
the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-performance
graphics circuit 738 via a high-performance graphics inter-
face 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 7, various [/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodiment,
second bus 720 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 720 including, for
example, a keyboard and/or mouse 722, communication
devices 727 and a storage unit 728 such as a disk drive or other
mass storage device which may include instructions/code and
data 730, in one embodiment. Further, an audio /O 724 may
be coupled to second bus 720. Note that other architectures
are possible. For example, instead of the point-to-point archi-
tecture of FIG. 7, a system may implement a multi-drop bus or
other such architecture.

Referring now to FIG. 8, shown is a block diagram of a
system 800 in accordance with an embodiment of the present
invention. FIG. 8 illustrates that the processors 870, 880 may
include integrated memory and I/O control logic (“CL”) 872
and 882, respectively and intercommunicate with each other
via point-to-point interconnect 850 between point-to-point
(P-P) interfaces 878 and 888 respectively. Processors 870,
880 each communicate with chipset 890 via point-to-point
interconnects 852 and 854 through the respective P-P inter-
faces 876 to 894 and 886 to 898 as shown. For at least one
embodiment, the CL 872, 882 may include integrated
memory controller units. CLs 872, 882 may include I/O con-
trol logic. As depicted, memories 832, 834 coupled to CLs
872, 882 and 1/O devices 814 are also coupled to the control
logic 872, 882. Legacy 1/O devices 815 are coupled to the
chipset 890 via interface 896.

FIG. 9 depicts a tablet computing device 901 and a hand-
held smartphone 902 each having a circuitry integrated
therein as described in accordance with the embodiments. As
depicted, each of the tablet computing device 901 and the
hand-held smartphone 902 include a touchscreen interface
903 and an integrated processor 904 in accordance with dis-
closed embodiments.

For example, in one embodiment, a system embodies a
tablet computing device 901 or a hand-held smartphone 902,
in which a display unit of the system includes a touchscreen
interface 903 for the tablet or the smartphone and further in
which memory and an integrated circuit operating as an inte-
grated processor are incorporated into the tablet or smart-
phone, in which the integrated processor implements one or
more of the embodiments described herein for implementing
a speculative cache modification design. In one embodiment,
the integrated circuit described above or the depicted inte-
grated processor of the tablet or smartphone is an integrated

US 9,092,346 B2

15

silicon processor functioning as a central processing unit for
a tablet computing device or a smartphone.

For example, in accordance with one embodiment, a tablet
computing device includes a display unit and an integrated
circuit; and in such an embodiment, the integrated circuit
includes a data bus; a cache communicably interfaced with
the data bus; a pipeline communicably interfaced with the
data bus, in which the pipeline is to receive a store instruction
corresponding to a cache line to be written to cache; caching
logic to perform a speculative cache write of the cache line
into the cache before the store instruction retires from the
pipeline; and cache line validation logic to determine if the
cache line written into the cache is valid or invalid, in which
the cache line validation logic is to invalidate the cache line
speculatively written into the cache when determined invalid
and further in which the store instruction is allowed to retire
from the pipeline when the cache line is determined to be
valid.

FIG.10isablock diagram 1000 of an embodiment of tablet
computing device, a smartphone, or other mobile device in
which touchscreen interface connectors are used. Processor
1010 performs the primary processing operations. Audio sub-
system 1020 represents hardware (e.g., audio hardware and
audio circuits) and software (e.g., drivers, codecs) compo-
nents associated with providing audio functions to the com-
puting device. In one embodiment, a user interacts with the
tablet computing device or smartphone by providing audio
commands that are received and processed by processor
1010.

Display subsystem 1030 represents hardware (e.g., display
devices) and software (e.g., drivers) components that provide
a visual and/or tactile display for a user to interact with the
tablet computing device or smartphone. Display subsystem
1030 includes display interface 1032, which includes the
particular screen or hardware device used to provide a display
to a user. In one embodiment, display subsystem 1030
includes a touchscreen device that provides both output and
input to a user.

1/O controller 1040 represents hardware devices and soft-
ware components related to interaction with a user. 1/O con-
troller 1040 can operate to manage hardware that is part of
audio subsystem 1020 and/or display subsystem 1030. Addi-
tionally, I/O controller 1040 illustrates a connection point for
additional devices that connect to the tablet computing device
or smartphone through which a user might interact. In one
embodiment, I/O controller 1040 manages devices such as
accelerometers, cameras, light sensors or other environmen-
tal sensors, or other hardware that can be included in the tablet
computing device or smartphone. The input can be part of
direct user interaction, as well as providing environmental
input to the tablet computing device or smartphone.

In one embodiment, the tablet computing device or smart-
phone includes power management 1050 that manages bat-
tery power usage, charging of the battery, and features related
to power saving operation. Memory subsystem 1060 includes
memory devices for storing information in the tablet comput-
ing device or smartphone. Connectivity 1070 includes hard-
ware devices (e.g., wireless and/or wired connectors and
communication hardware) and software components (e.g.,
drivers, protocol stacks) to the tablet computing device or
smartphone to communicate with external devices. Cellular
connectivity 1072 may include, for example, wireless carriers
such as GSM (global system for mobile communications),
CDMA (code division multiple access), TDM (time division
multiplexing), or other cellular service standards). Wireless
connectivity 1074 may include, for example, activity that is
not cellular, such as personal area networks (e.g., Bluetooth),

10

15

20

25

30

35

40

45

50

55

60

65

16

local area networks (e.g., WiFi), and/or wide area networks
(e.g., WiMax), or other wireless communication.

Peripheral connections 1080 include hardware interfaces
and connectors, as well as software components (e.g., drivers,
protocol stacks) to make peripheral connections as a periph-
eral device (“to” 1082) to other computing devices, as well as
have peripheral devices (“from™ 1084) connected to the tablet
computing device or smartphone, including, for example, a
“docking” connector to connect with other computing
devices. Peripheral connections 1080 include common or
standards-based connectors, such as a Universal Serial Bus
(USB) connector, DisplayPort including MiniDisplayPort
(MDP), High Definition Multimedia Interface (HDMI),
Firewire, etc.

FIG. 11 shows a block diagram illustrating the develop-
ment of IP cores according to one embodiment. Storage
medium 1130 includes simulation software 1120 and/or hard-
ware or software model 1110. In one embodiment, the data
representing the IP core design can be provided to the storage
medium 1130 via memory 1140 (e.g., hard disk), wired con-
nection (e.g., internet) 1150 or wireless connection 1160. The
IP core information generated by the simulation tool and
model can then be transmitted to a fabrication facility 1165
where it can be fabricated by a 3rd party to perform at least
one instruction in accordance with at least one embodiment.

In some embodiments, one or more instructions may cor-
respond to a first type or architecture (e.g., x86) and be trans-
lated or emulated on a processor of a different type or archi-
tecture (e.g., ARM). An instruction, according to one
embodiment, may therefore be performed on any processor or
processor type, including ARM, x86, MIPS, a GPU, or other
processor type or architecture.

FIG. 12 illustrates how an instruction of a first type is
emulated by a processor of a different type, according to one
embodiment. In FIG. 12, program 1205 contains some
instructions that may perform the same or substantially the
same function as an instruction according to one embodi-
ment. However the instructions of program 1205 may be of a
type and/or format that is different or incompatible with pro-
cessor 1215, meaning the instructions of the type in program
1205 may not be able to execute natively by the processor
1215. However, with the help of emulation logic, 1210, the
instructions of program 1205 are translated into instructions
that are natively capable of being executed by the processor
1215. In one embodiment, the emulation logic is embodied in
hardware. In another embodiment, the emulation logic is
embodied in a tangible, machine-readable medium contain-
ing software to translate instructions of the type in the pro-
gram 1205 into the type natively executable by the processor
1215. In other embodiments, emulation logic is a combina-
tion of fixed-function or programmable hardware and a pro-
gram stored on a tangible, machine-readable medium. In one
embodiment, the processor contains the emulation logic,
whereas in other embodiments, the emulation logic exists
outside of the processor and is provided by a third party. In
one embodiment, the processor is capable of loading the
emulation logic embodied in a tangible, machine-readable
medium containing software by executing microcode or firm-
ware contained in or associated with the processor.

FIG. 13 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 13 shows a program in

US 9,092,346 B2

17

a high level language 1302 may be compiled using an x86
compiler 1304 to generate x86 binary code 1306 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1316. The processor with at least one x86 instruc-
tion set core 1316 represents any processor that can perform
substantially the same functions as a Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1304 represents a compiler that is operable to gen-
erate x86 binary code 1306 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1316.
Similarly, FIG. 13 shows the program in the high level lan-
guage 1302 may be compiled using an alternative instruction
set compiler 1308 to generate alternative instruction set
binary code 1310 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1314 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1312 is used to convert the
x86 binary code 1306 into code that may be natively executed
by the processor without at least one x86 instruction set core
1314. This converted code is not likely to be the same as the
alternative instruction set binary code 1310 because an
instruction converter capable of'this is difficult to make; how-
ever, the converted code will accomplish the general opera-
tion and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 1312 repre-
sents software, firmware, hardware, or a combination thereof
that, through emulation, simulation or any other process,
allows a processor or other electronic device that does not
have an x86 instruction set processor or core to execute the
x86 binary code 1306.

While the subject matter disclosed herein has been
described by way of example and in terms of the specific
embodiments, it is to be understood that the claimed embodi-
ments are not limited to the explicitly enumerated embodi-
ments disclosed. To the contrary, the disclosure is intended to
cover various modifications and similar arrangements as
would be apparent to those skilled in the art. Therefore, the
scope ofthe appended claims should be accorded the broadest
interpretation so as to encompass all such modifications and
similar arrangements. It is to be understood that the above
description is intended to be illustrative, and not restrictive.
Many other embodiments will be apparent to those of skill in
the art upon reading and understanding the above description.
The scope of the disclosed subject matter is therefore to be
determined in reference to the appended claims, along with
the full scope of equivalents to which such claims are entitled.

What is claimed is:

1. An integrated circuit comprising:

a data bus;

a cache communicably interfaced with the data bus;

a pipeline communicably interfaced with the data bus, the
pipeline to receive a store instruction corresponding to a
cache line to be written to cache;

caching logic to perform a speculative cache write of the
cache line into the cache before the store instruction
retires from the pipeline; and

cache line validation logic to determine if the cache line
written into the cache is valid or invalid, wherein the

10

20

25

30

35

40

45

50

55

60

65

18

cache line validation logic to invalidate the cache line
speculatively written into the cache when determined
invalid and wherein the store instruction is allowed to
retire from the pipeline when the cache line is deter-
mined valid.

2. The integrated circuit of claim 1, wherein the integrated
circuit comprises a central processing unit for one of a tablet
computing device or a smartphone.

3. The integrated circuit of claim 1:

wherein the store instruction corresponding to the cache

line to be written to cache comprises the store instruction
to specify a register with an address; and

wherein the cache line to be written to cache is based on the

address in the register.

4. The integrated circuit of claim 1, wherein the integrated
circuit to start and complete during two clock cycles of the
integrated circuit both:

(a) receiving the store instruction corresponding to the

cache line; and

(b) performing the speculative cache write of the cache line

into the cache.

5. The integrated circuit of claim 4:

wherein the pipeline to further receive a read instruction to

read the cache line from the cache;

wherein the integrated circuit to start and complete during

a single clock cycle of the integrated circuit both:

(a) receiving the read instruction for the cache line, and

(b) fulfilling the read instruction by reading the cache
line from the cache; and

wherein the single clock cycle of the integrated circuit

follows the two clock cycles of the integrated circuit
without any intervening clock cycles on the integrated
circuit.

6. The integrated circuit of claim 1, wherein the cache
comprises a Level 1 cache (L1 cache) at a lowest hierarchal
cache level for the integrated circuit.

7. The integrated circuit of claim 6, wherein the L1 cache
comprises a single cycle latency L1 cache.

8. The integrated circuit of claim 6, wherein the L1 cache
comprises a 16 K (Kilobyte) 4-way set associative cache for
a Central Processor Unit (CPU) embodied by the integrated
circuit.

9. The integrated circuit of claim 1, wherein the cache line
validation logic to determine if the cache line written into the
cache is valid or invalid comprises one of:

determining the cache line is valid when the store instruc-

tion retires from the pipeline;

determining the cache line is invalid when the pipeline is

flushed before the store instruction retires;

determining the cache line is invalid when the pipeline

processes a late replay for the store instruction corre-
sponding to the cache line; and

determining the cache line is invalid when the pipeline

processes a branch misprediction which causes a flush of
the store instruction.

10. The integrated circuit of claim 1, wherein the cache line
validation logic further maintains indexing information for
cache lines written to the cache via a speculative cache write.

11. The integrated circuit of claim 10, wherein the indexing
information maintains an index and a way for each cache line
written to the cache via a speculative cache write.

12. The integrated circuit of claim 10, further comprising:

a port to the cache capable to receive cache line invalida-

tions; and

wherein the cache line validation logic to invalidate the

cache line comprises the cache line validation logic to

US 9,092,346 B2

19

apply the indexing information for the cache line deter-

mined invalid against the port of the cache to invalidate

the cache line in the cache.

13. The integrated circuit of claim 1, further comprising
cache line qualification logic to determine whether a second
cache line corresponding to a second store instruction
received at the pipeline is to be written to the cache via the
speculative cache write or disqualified from being written to
the cache via the speculative cache write.

14. The integrated circuit of claim 13, wherein the cache
line qualification logic to disqualify the second cache line
from being written to the cache via the speculative cache
write based on one or more of:

a pipeline flush of the second store instruction before the
speculative cache write of the second cache line to the
cache;

a branch misprediction involving a branch which includes
the second store instruction;

a replay of the second store instruction corresponding to
the second cache line; and

the second store instruction being predicated off causing
the store instruction not to execute in the pipeline.

15. The integrated circuit of claim 1, wherein the cache line
validation logic to allow the store instruction to retire from the
pipeline when the cache line is determined valid comprises
retiring the cache line before subsequent instructions affect-
ing the cache line arrive at the pipeline.

16. The integrated circuit of claim 15, wherein retiring the
cache line before subsequent instructions affecting the cache
line arrive at the pipeline comprises:

detecting a snoop in the pipeline and responsively causing
a replay of subsequent instructions.

17. The integrated circuit of claim 1:

wherein the cache comprises a write through First Level
Data (FLD) cache for a first core on the integrated circuit
which is prohibited from storing dirty data and prohib-
ited from operating as a source cache to other processor
cores on the integrated circuit; and

wherein next level of cache on the integrated circuit oper-
ates as the source cache to other processor cores on the
integrated circuit.

18. A system comprising:

a display unit; and

an integrated circuit, wherein the integrated circuit com-
prises:

a data bus,

a cache communicably interfaced with the data bus;

a pipeline communicably interfaced with the data bus,
the pipeline to receive a store instruction correspond-
ing to a cache line to be written to cache,

caching logic to perform a speculative cache write of the
cache line into the cache before the store instruction
retires from the pipeline, and

cache line validation logic to determine if the cache line
written into the cache is valid or invalid, wherein the
cache line validation logic to invalidate the cache line
speculatively written into the cache when determined
invalid and wherein the store instruction is allowed to
retire from the pipeline when the cache line is deter-
mined valid.

19. The system of claim 18:

wherein the system embodies a tablet or a smartphone;

wherein the display unit comprises a touchscreen interface
of' the tablet or the smartphone; and

wherein the integrated circuit is incorporated into the tablet
or smartphone.

10

15

20

25

30

35

40

45

50

55

60

20

20. The system of claim 18, further comprising cache line
qualification logic to determine whether a second cache line
corresponding to a second store instruction received at the
pipeline is to be written to the cache via the speculative cache
write or disqualified from being written to the cache via the
speculative cache write.

21. A tablet computing device comprising:

a display unit; and

an integrated circuit, wherein the integrated circuit com-

prises:

a data bus,

a cache communicably interfaced with the data bus;

a pipeline communicably interfaced with the data bus,
the pipeline to receive a store instruction correspond-
ing to a cache line to be written to cache,

caching logic to perform a speculative cache write of the
cache line into the cache before the store instruction
retires from the pipeline, and

cache line validation logic to determine if the cache line
written into the cache is valid or invalid, wherein the
cache line validation logic to invalidate the cache line
speculatively written into the cache when determined
invalid and wherein the store instruction is allowed to
retire from the pipeline when the cache line is deter-
mined valid.

22. A method in an integrated circuit, the method compris-
ing:

receiving a store instruction at a pipeline of the integrated

circuit, the store instruction corresponding to a cache

line to be written to a cache;

writing the cache line to the cache of the integrated circuit

via a speculative cache write before the store instruction

retires from the pipeline;

determining if the cache line speculatively written into the

cache is valid or invalid;

invalidating the cache line in the cache when the cache line

is determined to be invalid; and

allowing the store instruction to retire from the pipeline

when the cache line is determined to be valid.

23. The method of claim 22, wherein determining if the
cache line written into the cache is valid or invalid comprises
one of:

determining the cache line is valid when the store instruc-

tion retires from the pipeline;

determining the cache line is invalid when the pipeline is

flushed before the store instruction retires;

determining the cache line is invalid when the pipeline

processes a late replay for the store instruction corre-

sponding to the cache line; and

determining the cache line is invalid when the pipeline

processes a branch misprediction which causes a flush of

the store instruction.

24. The method of claim 22, further comprising:

receiving a second store instruction at the pipeline of the

integrated circuit, the second store instruction corre-
sponding to a second cache line; and

determining whether the second cache line is to be written

to the cache via the speculative cache write or disquali-

fied from being written to the cache via the speculative
cache write.

25. The method of claim 24, wherein determining the sec-
ond cache line is to be disqualified comprises disqualifying
the second cache line from being written to the cache via the
speculative cache write based on one or more of:

a pipeline flush of the second store instruction before the

speculative cache write of the second cache line to the

cache;

US 9,092,346 B2
21 22

a branch misprediction which causes a flush of the store
instruction;

a replay of the second store instruction corresponding to
the second cache line; and

the second store instruction being predicated off causing 5
the store instruction not to execute in the pipeline.

#* #* #* #* #*

